How giant atoms may help catch gravitational waves from the Big Bang

Disir

Platinum Member
Sep 30, 2011
28,003
9,610
910
There was a lot of excitement last year when the LIGO collaboration detected gravitational waves, which are ripples in the fabric of space itself. And it’s no wonder – it was one of the most important discoveries of the century. By measuring gravitational waves from intense astrophysical processes like merging black holes, the experiment opens up a completely new way of observing and understanding the universe.

But there are limits to what LIGO can do. While gravitational waves exist with a big variety of frequencies, LIGO can only detect those within a certain range. In particular, there’s no way of measuring the type of high frequency gravitational waves that were generated in the Big Bang itself. Catching such waves would revolutionise cosmology, giving us crucial information about how the universe came to be. Our research presents a model that may one day enable this.

In the theory of general relativity developed by Einstein, the mass of an object curves space and time – the more mass, the more curvature. This is similar to how a person stretches the fabric of a trampoline when stepping on it. If the person starts moving up and down, this would generate undulations in the fabric that will move outwards from the position of the person. The speed at which the person is jumping will determine the frequency of the generated ripples in the fabric.
How giant atoms may help catch gravitational waves from the Big Bang

An interesting new model.
 

Forum List

Back
Top