🌟 Exclusive 2024 Prime Day Deals! 🌟

Unlock unbeatable offers today. Shop here: https://amzn.to/4cEkqYs 🎁

Global warming friends...Trump is dead serious and will wipe out probably far more then just Obama's

And what effect do you believe its presence in the atmosphere has on the planet's temperature.
 
And what effect do you believe its presence in the atmosphere has on the planet's temperature.
To reinforce climate change.

upload_2016-11-27_8-19-42.png
 
Global warming friends...Trump is dead serious and will wipe out probably far more then just Obama's 8 years if given the chance. Hell, Obama's executive climate orders are probably as good as gone before the sun sets on his first day.

And, whatever you do, pay no attention to what else Trump said in that interview (transcript here). Here he is on climate science:
“It’s a very complex subject. I’m not sure anybody is ever going to really know…. they say they have science on one side but then they also have those horrible emails that were sent between the scientists…. Terrible. Where they got caught, you know, so you see that and you say, what’s this all about. I absolutely have an open mind.”

https://thinkprogress.org/trump-fools-the-new-york-times-on-climate-change-180323fa5980#.mb5eu3el7

Here are 9 Obama Environmental Regulations in Trump's Crosshairs

Obama era regulations likely to land on Trump's chopping block

We just got done electing a full blown denier as our next president. In fact he my go back decades and completely deregulate carbon pollution all together on all power plants...I fully expect carbon emissions to be increasing within the next 2-4 years under this guy.

GrumpGood.jpg
 
And what effect do you believe its presence in the atmosphere has on the planet's temperature.






Thanks to water vapor, none that is measurable with our instruments.
 
I've forgotten Westie. What's your position? CO2 makes blue skies?






CO2 is the basic building block of life on this planet. What more need be said?
Only that you are a hired professional liar. CO2 and CH4 damned near destroyed all life on this planet at the PT Extinction event.





Bull poo. The only factual evidence we have for anything happening waaaay back then is COLD you halfwit. There is evidence of glaciation. There is ZERO evidence for any of your manure. None at all. Below is the best description of the possible causes. You will note that glaciation is first (that's what kills everything off) then they hypothesize that the temp bounces back, however they have nothing empirical for that. It is merely computer generated fiction, which we know is pretty poor.

"The PT extinction was rapid, probably taking place in less than a million years. Although it was much more severe in the ocean, it affected terrestrial ecosystems too. A prolific swamp flora in the Southern Hemisphere had been producing enough organic debris to form coals in Australia, but the coal beds stop abruptly at the P-T boundary. No coal was laid down anywhere in the world for at least 6 m.y. afterward. A large change in carbon isotopes occurred across the PT boundary, which signifies an important and global drop in photosynthesis that lasted a long time."(in other words, a world wide endless winter)


" The tremendous amount of sulfate aerosols would cool the climate enough to form ice-caps, rather quickly, and this in turn would cause a rather rapid drop in sea level along with global cooling, early in the eruptive sequence. In the rock record, we would expect to see changes in carbon and sulfur isotopes, and we do. Furthermore, as the plume erupts, the crust would be raised by the buoyant magma, perhaps enough to form a land footing for the large continental ice sheets that would grow in these high latitudes. Finally, as the eruption dies off, the crust would subside and the aerosols would disperse, making for a rapid end to the volcanically induced glaciation and another rapid change in climate. It is possible, but not calculated yet, that the volcanic gases that had built up during the eruption could have had a greenhouse effect for some time after the eruption ended, taking the earth from a volcanic glaciation to a volcanic hothouse. (in other words, the cold killed everything off, and maybe, there was a hot house afterward, we have evidence of the cold, we have zero evidence of the hot)

The Permo-Triassic (P-T) Extinction
 
I note in your document a comment that an impact was "suggested" for the KT Boundary. I checked the data. Your reference is from 2001.

Here is the intro bit from Wikipedia's "Permian-Triassic Extinction Event. Note they have information that your author did not.

There is evidence for one to three distinct pulses, or phases, of extinction.[7][11][12][13] Suggested mechanisms for the latter include one or more large bolide impact events, massive volcanism, coal or gas fires and explosions from the Siberian Traps,[14] and a runaway greenhouse effect triggered by sudden release of methane from the sea floor due to methane clathrate dissociation or methane-producing microbesknown as methanogens;[15] possible contributing gradual changes include sea-level change, increasing anoxia, increasing aridity, and a shift in ocean circulation driven by climate change.

Wikipedia article has significant references. I suggest a review of newer material available in the following.

References
  1. Jump up^ Rohde, R.A. & Muller, R.A. (2005). "Cycles in fossil diversity". Nature. 434 (7030): 209–210. Bibcode:2005Natur.434..208R. doi:10.1038/nature03339. PMID 15758998.
  2. Jump up^ ""Great Dying" Lasted 200,000 Years". National Geographic. 23 November 2011. Retrieved 1 April 2014.
  3. Jump up^ "How a Single Act of Evolution Nearly Wiped Out All Life on Earth". ScienceDaily. 1 April 2014. Retrieved 1 April 2014.
  4. Jump up^ Shen S.-Z.; et al. (2011). "Calibrating the End-Permian Mass Extinction". Science. 334 (6061): 1367–1372. Bibcode:2011Sci...334.1367S. doi:10.1126/science.1213454. PMID 22096103.
  5. ^ Jump up to:a b c Benton M J (2005). When life nearly died: the greatest mass extinction of all time. London: Thames & Hudson. ISBN 0-500-28573-X.
  6. Jump up^ Carl T. Bergstrom; Lee Alan Dugatkin (2012). Evolution. Norton. p. 515. ISBN 978-0-393-92592-0.
  7. ^ Jump up to:a b c d e f g Sahney, S.; Benton, M. J. (2008). "Recovery from the most profound mass extinction of all time". Proceedings of the Royal Society: Biological. 275 (1636): 759–65. doi:10.1098/rspb.2007.1370. PMC 2596898
    9px-Lock-green.svg.png
    . PMID 18198148.
  8. ^ Jump up to:a b c Labandeira CC, Sepkoski JJ (1993). "Insect diversity in the fossil record". Science. 261 (5119): 310–315. Bibcode:1993Sci...261..310L. doi:10.1126/science.11536548. PMID 11536548.
  9. Jump up^ Sole RV, Newman M (2003). "Extinctions and Biodiversity in the Fossil Record". In Canadell JG, Mooney, HA. Encyclopedia of Global Environmental Change, The Earth System – Biological and Ecological Dimensions of Global Environmental Change (Volume 2). New York: Wiley. pp. 297–391. ISBN 0-470-85361-1.
  10. Jump up^ "It Took Earth Ten Million Years to Recover from Greatest Mass Extinction". ScienceDaily. 27 May 2012. Retrieved 28 May2012.
  11. ^ Jump up to:a b c d Jin YG, Wang Y, Wang W, Shang QH, Cao CQ, Erwin DH (2000). "Pattern of Marine Mass Extinction Near the Permian–Triassic Boundary in South China". Science. 289(5478): 432–436. Bibcode:2000Sci...289..432J. doi:10.1126/science.289.5478.432. PMID 10903200.
  12. Jump up^ Yin H, Zhang K, Tong J, Yang Z, Wu S. The Global Stratotype Section and Point (GSSP) of the Permian-Triassic Boundary. Episodes. 24. pp. 102–114.
  13. Jump up^ Yin HF, Sweets WC, Yang ZY, Dickins JM (1992). "Permo-Triassic events in the eastern Tethys–an overview". In Sweet WC. Permo-Triassic events in the eastern Tethys: stratigraphy, classification, and relations with the western Tethys. Cambridge, UK: Cambridge University Press. pp. 1–7. ISBN 0-521-54573-0.
  14. Jump up^ Darcy E. Ogdena & Norman H. Sleep (2011). "Explosive eruption of coal and basalt and the end-Permian mass extinction". Proceedings of the National Academy of Sciences of the United States of America. 109 (1): 59–62. Bibcode:2012PNAS..109...59O. doi:10.1073/pnas.1118675109. PMC 3252959
    9px-Lock-green.svg.png
    . PMID 22184229.
  15. Jump up^ David L. Chandler – MIT News Office (31 March 2014). "Ancient whodunit may be solved: The microbes did it!". MIT News.
  16. ^ Jump up to:a b c d e f g h i Payne, J. L.; Lehrmann, D. J.; Wei, J.; Orchard, M. J.; Schrag, D. P.; Knoll, A. H. (2004). "Large Perturbations of the Carbon Cycle During Recovery from the End-Permian Extinction". Science. 305 (5683): 506–9. doi:10.1126/science.1097023. PMID 15273391.
  17. Jump up^ Benton, M. J. (2012). "No gap in the Middle Permian record of terrestrial vertebrates". Geology. 40. doi:10.1130/g32669.1.
  18. ^ Jump up to:a b c d e f g h i j k l m McElwain, J. C.; Punyasena, S. W. (2007). "Mass extinction events and the plant fossil record". Trends in Ecology & Evolution. 22 (10): 548–557. doi:10.1016/j.tree.2007.09.003. PMID 17919771.
  19. ^ Jump up to:a b c d e Retallack, G. J.; Veevers, J. J.; Morante, R. (1996). "Global coal gap between Permian–Triassic extinctions and middle Triassic recovery of peat forming plants". GSA Bulletin. 108 (2): 195–207. doi:10.1130/0016-7606(1996)108<0195:GCGBPT>2.3.CO;2.
  20. Jump up^ Erwin, D.H (1993). The Great Paleozoic Crisis: Life and Death in the Permian. New York: Columbia University Press. ISBN 0-231-07467-0.
  21. ^ Jump up to:a b Burgess, SD (2014). "High-precision timeline for Earth's most severe extinction". Nature. 111 (9): 3316–3321. doi:10.1073/pnas.1317692111. PMC 3948271
    9px-Lock-green.svg.png
    . PMID 24516148.
  22. Jump up^ Magaritz M (1989). "13C minima follow extinction events: a clue to faunal radiation". Geology. 17 (4): 337–340. Bibcode:1989Geo....17..337M. doi:10.1130/0091-7613(1989)017<0337:CMFEEA>2.3.CO;2.
  23. Jump up^ Krull SJ, Retallack JR (2000). "13C depth profiles from paleosols across the Permian–Triassic boundary: Evidence for methane release". GSA Bulletin. 112 (9): 1459–1472. Bibcode:2000GSAB..112.1459K. doi:10.1130/0016-7606(2000)112<1459:CDPFPA>2.0.CO;2. ISSN 0016-7606.
  24. Jump up^ Dolenec T, Lojen S, Ramovs A (2001). "The Permian–Triassic boundary in Western Slovenia (Idrijca Valley section): magnetostratigraphy, stable isotopes, and elemental variations". Chemical Geology. 175 (1): 175–190. doi:10.1016/S0009-2541(00)00368-5.
  25. Jump up^ Musashi M, Isozaki Y, Koike T, Kreulen R (2001). "Stable carbon isotope signature in mid-Panthalassa shallow-water carbonates across the Permo–Triassic boundary: evidence for 13C-depleted ocean". Earth Planet. Sci. Lett. 193: 9–20. Bibcode:2001E&PSL.191....9M. doi:10.1016/S0012-821X(01)00398-3.
  26. Jump up^ Dolenec T, Lojen S, Ramovs A (2001). "The Permian-Triassic boundary in Western Slovenia (Idrijca Valley section): magnetostratigraphy, stable isotopes, and elemental variations". Chemical Geology. 175: 175–190. doi:10.1016/S0009-2541(00)00368-5.
  27. ^ Jump up to:a b H Visscher; H Brinkhuis; D L Dilcher; W C Elsik; Y Eshet; C V Looy; M R Rampino & A Traverse (1996). "The terminal Paleozoic fungal event: Evidence of terrestrial ecosystem destabilization and collapse". Proceedings of the National Academy of Sciences. 93 (5): 2155–2158. Bibcode:1996PNAS...93.2155V. doi:10.1073/pnas.93.5.2155. PMC 39926
    9px-Lock-green.svg.png
    . PMID 11607638.
  28. Jump up^ Foster, C.B.; Stephenson, M.H.; Marshall, C.; Logan, G.A.; Greenwood, P.F. (2002). "A Revision Of Reduviasporonites Wilson 1962: Description, Illustration, Comparison And Biological Affinities". Palynology. 26 (1): 35–58. doi:10.2113/0260035.
  29. Jump up^ López-Gómez, J. & Taylor, E.L. (2005). "Permian-Triassic Transition in Spain: A multidisciplinary approach". Palaeogeography, Palaeoclimatology, Palaeoecology. 229 (1–2): 1–2. doi:10.1016/j.palaeo.2005.06.028.
  30. ^ Jump up to:a b Looy CV, Twitchett RJ, Dilcher DL, Van Konijnenburg-Van Cittert JH, Visscher H (2005). "Life in the end-Permian dead zone". Proceedings of the National Academy of Sciences. 162(4): 7879–7883. Bibcode:2001PNAS...98.7879L. doi:10.1073/pnas.131218098. PMC 35436
    9px-Lock-green.svg.png
    . PMID 11427710. See image 2
  31. ^ Jump up to:a b Ward PD, Botha J, Buick R, De Kock MO, Erwin DH, Garrison GH, Kirschvink JL & Smith R (2005). "Abrupt and Gradual Extinction Among Late Permian Land Vertebrates in the Karoo Basin, South Africa". Science. 307 (5710): 709–714. Bibcode:2005Sci...307..709W. doi:10.1126/science.1107068. PMID 15661973.
  32. Jump up^ Retallack, G.J.; Smith, R.M.H.; Ward, P.D. (2003). "Vertebrate extinction across Permian-Triassic boundary in Karoo Basin, South Africa". Bulletin of the Geological Society of America. 115 (9): 1133–1152. Bibcode:2003GSAB..115.1133R. doi:10.1130/B25215.1.
  33. Jump up^ Sephton, M. A.; Visscher, H.; Looy, C. V.; Verchovsky, A. B.; Watson, J. S. (2009). "Chemical constitution of a Permian-Triassic disaster species". Geology. 37 (10): 875–878. doi:10.1130/G30096A.1.
  34. Jump up^ Rampino MR, Prokoph A & Adler A (2000). "Tempo of the end-Permian event: High-resolution cyclostratigraphy at the Permian–Triassic boundary". Geology. 28 (7): 643–646. Bibcode:2000Geo....28..643R. doi:10.1130/0091-7613(2000)28<643:TOTEEH>2.0.CO;2. ISSN 0091-7613.
  35. Jump up^ Wang, S.C.; Everson, P.J. (2007). "Confidence intervals for pulsed mass extinction events". Paleobiology. 33 (2): 324–336. doi:10.1666/06056.1.
  36. Jump up^ Twitchett RJ, Looy CV, Morante R, Visscher H & Wignall PB (2001). "Rapid and synchronous collapse of marine and terrestrial ecosystems during the end-Permian biotic crisis". Geology. 29(4): 351–354. Bibcode:2001Geo....29..351T. doi:10.1130/0091-7613(2001)029<0351:RASCOM>2.0.CO;2. ISSN 0091-7613.
  37. Jump up^ Retallack, G.J.; Metzger, C.A.; Greaver, T.; Jahren, A.H.; Smith, R.M.H.; Sheldon, N.D. (2006). "Middle-Late Permian mass extinction on land". Bulletin of the Geological Society of America. 118 (11–12): 1398–1411. Bibcode:2006GSAB..118.1398R. doi:10.1130/B26011.1.
  38. Jump up^ Stanley SM & Yang X (1994). "A Double Mass Extinction at the End of the Paleozoic Era". Science. 266 (5189): 1340–1344. Bibcode:1994Sci...266.1340S. doi:10.1126/science.266.5189.1340. PMID 17772839.
  39. Jump up^ Retallack, G.J., Metzger, C.A., Jahren, A.H., Greaver, T., Smith, R.M.H., and Sheldon, N.D (November–December 2006). "Middle-Late Permian mass extinction on land". GSA Bulletin. 118(11/12): 1398–1411. Bibcode:2006GSAB..118.1398R. doi:10.1130/B26011.1.
  40. Jump up^ Ota, A & Isozaki, Y. (March 2006). "Fusuline biotic turnover across the Guadalupian–Lopingian (Middle–Upper Permian) boundary in mid-oceanic carbonate buildups: Biostratigraphy of accreted limestone in Japan". Journal of Asian Earth Sciences. 26 (3–4): 353–368. Bibcode:2006JAESc..26..353O. doi:10.1016/j.jseaes.2005.04.001.
  41. Jump up^ Shen, S. & Shi, G.R. (2002). "Paleobiogeographical extinction patterns of Permian brachiopods in the Asian-western Pacific region". Paleobiology. 28 (4): 449–463. doi:10.1666/0094-8373(2002)028<0449:pEPOPB>2.0.CO;2. ISSN 0094-8373.
  42. Jump up^ Wang, X-D & Sugiyama, T. (December 2000). "Diversity and extinction patterns of Permian coral faunas of China". Lethaia. 33 (4): 285–294. doi:10.1080/002411600750053853.
  43. Jump up^ Racki G (1999). "Silica-secreting biota and mass extinctions: survival processes and patterns". Palaeogeography, Palaeoclimatology, Palaeoecology. 154 (1–2): 107–132. doi:10.1016/S0031-0182(99)00089-9.
  44. Jump up^ Bambach, R.K.; Knoll, A.H.; Wang, S.C. (December 2004). "Origination, extinction, and mass depletions of marine diversity". Paleobiology. 30 (4): 522–542. doi:10.1666/0094-8373(2004)030<0522:OEAMDO>2.0.CO;2. ISSN 0094-8373.
  45. ^ Jump up to:a b Knoll, A.H. (2004). "Biomineralization and evolutionary history. In: P.M. Dove, J.J. DeYoreo and S. Weiner (Eds), Reviews in Mineralogy and Geochemistry," (PDF).
  46. Jump up^ Stanley, S.M. (2008). "Predation defeats competition on the seafloor". Paleobiology. 34 (1): 1–21. doi:10.1666/07026.1. Retrieved 2008-05-13.
  47. Jump up^ Stanley, S.M. (2007). "An Analysis of the History of Marine Animal Diversity". Paleobiology. 33 (sp6): 1–55. doi:10.1666/06020.1.
  48. ^ Jump up to:a b c d Erwin DH (1993). The great Paleozoic crisis; Life and death in the Permian. Columbia University Press. ISBN 0-231-07467-0.
  49. Jump up^ McKinney, M.L. (1987). "Taxonomic selectivity and continuous variation in mass and background extinctions of marine taxa". Nature. 325 (6100): 143–145. Bibcode:1987Natur.325..143M. doi:10.1038/325143a0.
  50. ^ Jump up to:a b Twitchett RJ, Looy CV, Morante R, Visscher H, Wignall PB (2001). "Rapid and synchronous collapse of marine and terrestrial ecosystems during the end-Permian biotic crisis". Geology. 29(4): 351–354. Bibcode:2001Geo....29..351T. doi:10.1130/0091-7613(2001)029<0351:RASCOM>2.0.CO;2. ISSN 0091-7613.
  51. Jump up^ "Permian : The Marine Realm and The End-Permian Extinction". paleobiology.si.edu. Retrieved 2016-01-26.
  52. ^ Jump up to:a b "Permian extinction". Encyclopedia Britannica. Retrieved 2016-01-26.
  53. Jump up^ Knoll, A.H.; Bambach, R.K.; Canfield, D.E.; Grotzinger, J.P. (1996). "Comparative Earth history and Late Permian mass extinction". Science. 273 (5274): 452–457. Bibcode:1996Sci...273..452K. doi:10.1126/science.273.5274.452. PMID 8662528.
  54. Jump up^ Leighton, L.R.; Schneider, C.L. (2008). "Taxon characteristics that promote survivorship through the Permian–Triassic interval: transition from the Paleozoic to the Mesozoic brachiopod fauna". Paleobiology. 34 (1): 65–79. doi:10.1666/06082.1.
  55. Jump up^ Villier, L.; Korn, D. (Oct 2004). "Morphological Disparity of Ammonoids and the Mark of Permian Mass Extinctions". Science. 306 (5694): 264–266. Bibcode:2004Sci...306..264V. doi:10.1126/science.1102127. ISSN 0036-8075. PMID 15472073.
  56. Jump up^ Saunders, W. B.; Greenfest-Allen, E.; Work, D. M.; Nikolaeva, S. V. (2008). "Morphologic and taxonomic history of Paleozoic ammonoids in time and morphospace". Paleobiology. 34 (1): 128–154. doi:10.1666/07053.1.
  57. Jump up^ "The Dino Directory – Natural History Museum".
  58. Jump up^ Cascales-Miñana, B.; Cleal, C. J. (2011). "Plant fossil record and survival analyses". Lethaia. 45: no–no. doi:10.1111/j.1502-3931.2011.00262.x.
  59. ^ Jump up to:a b Retallack, GJ (1995). "Permian–Triassic life crisis on land". Science. 267 (5194): 77–80. Bibcode:1995Sci...267...77R. doi:10.1126/science.267.5194.77. PMID 17840061.
  60. Jump up^ Looy, CV Brugman WA Dilcher DL & Visscher H (1999). "The delayed resurgence of equatorial forests after the Permian–Triassic ecologic crisis". Proceedings of the National Academy of Sciences of the United States of America. 96 (24): 13857–13862. Bibcode:1999PNAS...9613857L. doi:10.1073/pnas.96.24.13857. PMC 24155
    9px-Lock-green.svg.png
    . PMID 10570163.
  61. Jump up^ Michaelsen P (2002). "Mass extinction of peat-forming plants and the effect on fluvial styles across the Permian–Triassic boundary, northern Bowen Basin, Australia". Palaeogeography, Palaeoclimatology, Palaeoecology. 179 (3–4): 173–188. doi:10.1016/S0031-0182(01)00413-8.
  62. Jump up^ Maxwell, W. D. (1992). "Permian and Early Triassic extinction of non-marine tetrapods". Palaeontology. 35: 571–583.
  63. Jump up^ Erwin DH (1990). "The End-Permian Mass Extinction". Annual Review of Ecology and Systematics. 21: 69–91. doi:10.1146/annurev.es.21.110190.000441.
  64. Jump up^ "Bristol University – News – 2008: Mass extinction".
  65. ^ Jump up to:a b c d e f Knoll, A.H., Bambach, R.K., Payne, J.L., Pruss, S., and Fischer, W.W. (2007). "Paleophysiology and end-Permian mass extinction" (PDF). Earth and Planetary Science Letters. 256 (3–4): 295–313. Bibcode:2007E&PSL.256..295K. doi:10.1016/j.epsl.2007.02.018. Retrieved 2008-07-04.
  66. Jump up^ Payne, J.; Turchyn, A.; Paytan, A.; Depaolo, D.; Lehrmann, D.; Yu, M.; Wei, J. (2010). "Calcium isotope constraints on the end-Permian mass extinction". Proceedings of the National Academy of Sciences of the United States of America. 107 (19): 8543–8548. Bibcode:2010PNAS..107.8543P. doi:10.1073/pnas.0914065107. PMC 2889361
    9px-Lock-green.svg.png
    . PMID 20421502.
  67. Jump up^ Clarkson, M.; Kasemann, S.; Wood, R.; Lenton, T.; Daines, S.; Richoz, S.; Ohnemueller, F.; Meixner, A.; Poulton, S.; Tipper, E. (2015-04-10). "Ocean acidification and the Permo-Triassic mass extinction". Science. 348 (6231): 229–232. doi:10.1126/science.aaa0193. Retrieved 2016-10-24.
  68. Jump up^ Smith, R.M.H. (16 November 1999). "Changing fluvial environments across the Permian-Triassic boundary in the Karoo Basin, South Africa and possible causes of tetrapod extinctions". Palaeogeography, Palaeoclimatology, Palaeoecology. 117 (1-2): 81–104. doi:10.1016/0031-0182(94)00119-S. Retrieved 21 February 2012.
  69. Jump up^ Chinsamy-Turan (2012). Anusuya, ed. Forerunners of mammals : radiation, histology, biology. Bloomington: Indiana University Press. ISBN 978-0-253-35697-0.
  70. Jump up^ Visscher, Henk; Looy, Cindy V.; Collinson, Margaret E.; Brinkhuis, Henk; Cittert, Johanna H. A. van Konijnenburg-van; Kürschner, Wolfram M.; Sephton, Mark A. (2004-08-31). "Environmental mutagenesis during the end-Permian ecological crisis". Proceedings of the National Academy of Sciences of the United States of America. 101 (35): 12952–12956. doi:10.1073/pnas.0404472101. ISSN 0027-8424. PMC 516500
    9px-Lock-green.svg.png
    . PMID 15282373.
  71. Jump up^ Lehrmann, Daniel J.; Ramezani, Jahandar; Bowring, Samuel A.; Martin, Mark W.; Montgomery, Paul; Enos, Paul; Payne, Jonathan L.; Orchard, Michael J.; Wang Hongmei; Wei Jiayong (December 2006). "Timing of recovery from the end-Permian extinction: Geochronologic and biostratigraphic constraints from south China". Geology. 34 (12): 1053–1056. Bibcode:2006Geo....34.1053L. doi:10.1130/G22827A.1.
  72. Jump up^ Yadong Sun1,2,*, Michael M. Joachimski3, Paul B. Wignall2, Chunbo Yan1, Yanlong Chen4, Haishui Jiang1, Lina Wang1, Xulong Lai1 (2012). "Lethally Hot Temperatures During the Early Triassic Greenhouse". Science. 338 (6105): 366–370. Bibcode:2012Sci...338..366S. doi:10.1126/science.1224126. PMID 23087244.
  73. Jump up^ During the greatest mass extinction in Earth’s history the world’s oceans reached 40 °C (104 °F) – lethally hot.
  74. Jump up^ Lau, Kimberly V.; Maher, Kate; Altiner, Demir; Kelley, Brian M.; Kump, Lee R.; Lehrmann, Daniel J.; Silva-Tamayo, Juan Carlos; Weaver, Karrie L.; Yu, Meiyi; Payne, Jonathan L. (2016). "Marine anoxia and delayed Earth system recovery after the end-Permian extinction". Proceedings of the National Academy of Sciences. 113 (9): 2360–2365. doi:10.1073/pnas.1515080113.
  75. Jump up^ Ward PD, Montgomery DR, Smith R (2000). "Altered river morphology in South Africa related to the Permian–Triassic extinction". Science. 289 (5485): 1740–1743. Bibcode:2000Sci...289.1740W. doi:10.1126/science.289.5485.1740. PMID 10976065.
  76. ^ Jump up to:a b Hallam, A; Wignall, P B (1997). Mass Extinctions and their Aftermath. Oxford University Press. ISBN 978-0-19-854916-1.
  77. Jump up^ Rodland, DL & Bottjer, DJ (2001). "Biotic Recovery from the End-Permian Mass Extinction: Behavior of the Inarticulate Brachiopod Lingula as a Disaster Taxon". PALAIOS. 16 (1): 95–101. doi:10.1669/0883-1351(2001)016<0095:BRFTEP>2.0.CO;2. ISSN 0883-1351.
  78. Jump up^ Zi-qiang W (1996). "Recovery of vegetation from the terminal Permian mass extinction in North China". Review of Palaeobotany and Palynology. 91 (1–4): 121–142. doi:10.1016/0034-6667(95)00069-0.
  79. ^ Jump up to:a b Wagner PJ, Kosnik MA, Lidgard S (2006). "Abundance Distributions Imply Elevated Complexity of Post-Paleozoic Marine Ecosystems". Science. 314 (5803): 1289–1292. Bibcode:2006Sci...314.1289W. doi:10.1126/science.1133795. PMID 17124319.
  80. Jump up^ Clapham, M.E., Bottjer, D.J. and Shen, S. (2006). "Decoupled diversity and ecology during the end-Guadalupian extinction (late Permian)". Geological Society of America Abstracts with Programs. 38 (7): 117. Retrieved 2008-03-28.
  81. Jump up^ Foote, M. (1999). "Morphological diversity in the evolutionary radiation of Paleozoic and post-Paleozoic crinoids". Paleobiology. 25 (sp1): 1–116. doi:10.1666/0094-8373(1999)25[1:MDITER]2.0.CO;2. ISSN 0094-8373. JSTOR 2666042.
  82. Jump up^ Baumiller, T. K. (2008). "Crinoid Ecological Morphology". Annual Review of Earth and Planetary Sciences. 36 (1): 221–249. Bibcode:2008AREPS..36..221B. doi:10.1146/annurev.earth.36.031207.124116.
  83. Jump up^ Botha, J. & Smith, R.M.H. (2007). "Lystrosaurus species composition across the Permo–Triassic boundary in the Karoo Basin of South Africa". Lethaia. 40 (2): 125–137. doi:10.1111/j.1502-3931.2007.00011.x. Retrieved 2008-07-02.Full version online at "Lystrosaurus species composition across the Permo–Triassic boundary in the Karoo Basin of South Africa" (PDF). Retrieved 2008-07-02.
  84. Jump up^ Benton, M.J. (2004). Vertebrate Paleontology. Blackwell Publishers. xii–452. ISBN 0-632-05614-2.
  85. Jump up^ Ruben, J.A. & Jones, T.D. (2000). "Selective Factors Associated with the Origin of Fur and Feathers". American Zoologist. 40 (4): 585–596. doi:10.1093/icb/40.4.585.
  86. Jump up^ Yates AM & Warren AA (2000). "The phylogeny of the 'higher' temnospondyls (Vertebrata: Choanata) and its implications for the monophyly and origins of the Stereospondyli". Zoological Journal of the Linnean Society. 128 (1): 77–121. doi:10.1111/j.1096-3642.2000.tb00650.x. Archived from the original on 2007-10-01. Retrieved 2008-01-18.
  87. Jump up^ Retallack GJ, Seyedolali A, Krull ES, Holser WT, Ambers CP, Kyte FT (1998). "Search for evidence of impact at the Permian–Triassic boundary in Antarctica and Australia". Geology. 26(11): 979–982. Bibcode:1998Geo....26..979R. doi:10.1130/0091-7613(1998)026<0979:SFEOIA>2.3.CO;2.
  88. ^ Jump up to:a b Becker L, Poreda RJ, Basu AR, Pope KO, Harrison TM, Nicholson C, Iasky R (2004). "Bedout: a possible end-Permian impact crater offshore of northwestern Australia". Science. 304(5676): 1469–1476. Bibcode:2004Sci...304.1469B. doi:10.1126/science.1093925. PMID 15143216.
  89. Jump up^ Becker L, Poreda RJ, Hunt AG, Bunch TE, Rampino M (2001). "Impact event at the Permian–Triassic boundary: Evidence from extraterrestrial noble gases in fullerenes". Science. 291 (5508): 1530–1533. Bibcode:2001Sci...291.1530B. doi:10.1126/science.1057243. PMID 11222855.
  90. Jump up^ Basu AR, Petaev MI, Poreda RJ, Jacobsen SB, Becker L (2003). "Chondritic meteorite fragments associated with the Permian–Triassic boundary in Antarctica". Science. 302 (5649): 1388–1392. Bibcode:2003Sci...302.1388B. doi:10.1126/science.1090852. PMID 14631038.
  91. Jump up^ Kaiho K, Kajiwara Y, Nakano T, Miura Y, Kawahata H, Tazaki K, Ueshima M, Chen Z, Shi GR (2001). "End-Permian catastrophe by a bolide impact: Evidence of a gigantic release of sulfur from the mantle". Geology. 29 (9): 815–818. Bibcode:2001Geo....29..815K. doi:10.1130/0091-7613(2001)029<0815:EPCBAB>2.0.CO;2. ISSN 0091-7613. Retrieved 2007-10-22.
  92. Jump up^ Farley KA, Mukhopadhyay S, Isozaki Y, Becker L, Poreda RJ (2001). "An extraterrestrial impact at the Permian–Triassic boundary?". Science. 293 (5539): 2343a–2343. doi:10.1126/science.293.5539.2343a. PMID 11577203.
  93. Jump up^ Koeberl C, Gilmour I, Reimold WU, Philippe Claeys P, Ivanov B (2002). "End-Permian catastrophe by bolide impact: Evidence of a gigantic release of sulfur from the mantle: Comment and Reply". Geology. 30 (9): 855–856. Bibcode:2002Geo....30..855K. doi:10.1130/0091-7613(2002)030<0855:EPCBBI>2.0.CO;2. ISSN 0091-7613.
  94. Jump up^ Isbell JL, Askin RA, Retallack GR (1999). "Search for evidence of impact at the Permian–Triassic boundary in Antarctica and Australia; discussion and reply". Geology. 27 (9): 859–860. Bibcode:1999Geo....27..859I. doi:10.1130/0091-7613(1999)027<0859:SFEOIA>2.3.CO;2.
  95. Jump up^ Koeberl K, Farley KA, Peucker-Ehrenbrink B, Sephton MA (2004). "Geochemistry of the end-Permian extinction event in Austria and Italy: No evidence for an extraterrestrial component". Geology. 32 (12): 1053–1056. Bibcode:2004Geo....32.1053K. doi:10.1130/G20907.1.
  96. Jump up^ Langenhorst F, Kyte FT & Retallack GJ (2005). "Reexamination of quartz grains from the Permian–Triassic boundary section at Graphite Peak, Antarctica" (PDF). Lunar and Planetary Science Conference XXXVI. Retrieved 2007-07-13.
  97. Jump up^ Jones AP, Price GD, Price NJ, DeCarli PS, Clegg RA (2002). "Impact induced melting and the development of large igneous provinces". Earth and Planetary Science Letters. 202 (3): 551–561. Bibcode:2002E&PSL.202..551J. doi:10.1016/S0012-821X(02)00824-5.
  98. ^ Jump up to:a b c d White RV (2002). "Earth's biggest 'whodunnit': unravelling the clues in the case of the end-Permian mass extinction" (PDF). Phil. Trans. Royal Society of London. 360(1801): 2963–2985. Bibcode:2002RSPTA.360.2963W. doi:10.1098/rsta.2002.1097. PMID 12626276. Retrieved 2008-01-12.
  99. Jump up^ AHager, Bradford H (2001). "Giant Impact Craters Lead To Flood Basalts: A Viable Model". CCNet 33/2001: Abstract 50470.
  100. Jump up^ Hagstrum, Jonathan T (2001). "Large Oceanic Impacts As The Cause Of Antipodal Hotspots And Global Mass Extinctions". CCNet 33/2001: Abstract 50288.
  101. Jump up^ von Frese RR, Potts L, Gaya-Pique L, Golynsky AV, Hernandez O, Kim J, Kim H & Hwang J (2006). "Permian–Triassic mascon in Antarctica". Eos Trans. AGU, Jt. Assem. Suppl. 87 (36): Abstract T41A–08. Retrieved 2007-10-22.
  102. Jump up^ Von Frese, R.R.B.; L. V. Potts; S. B. Wells; T. E. Leftwich; H. R. Kim; J. W. Kim; A. V. Golynsky; O. Hernandez; L. R. Gaya-Piqué (2009). "GRACE gravity evidence for an impact basin in Wilkes Land, Antarctica". Geochem. Geophys. Geosyst. 10 (2): Q02014. Bibcode:2009GGG....1002014V. doi:10.1029/2008GC002149.
  103. Jump up^ Tohver E.; Lana C.; Cawood P.A.; Fletcher I.R.; Jourdan F.; Sherlock S.; Rasmussen B.; Trindade R.I.F.; Yokoyama E.; Filho C.R. Souza; Marangoni Y. "Geochronological constraints on the age of a Permo–Triassic impact event: U–Pb and 40Ar/39Ar results for the 40 km Araguainha structure of central Brazil". Geochimica et Cosmochimica Acta. 86: 214–227. Bibcode:2012GeCoA..86..214T. doi:10.1016/j.gca.2012.03.005.
  104. Jump up^ Biggest extinction in history caused by climate-changing meteor. University of Western Australia University News Wednesday, 31 July 2013. Biggest extinction in history caused by climate-changing meteor
  105. Jump up^ Zhou, M-F., Malpas, J, Song, X-Y, Robinson, PT, Sun, M, Kennedy, AK, Lesher, CM & Keays, RR (2002). "A temporal link between the Emeishan large igneous province (SW China) and the end-Guadalupian mass extinction". Earth and Planetary Science Letters. 196 (3–4): 113–122. Bibcode:2002E&PSL.196..113Z. doi:10.1016/S0012-821X(01)00608-2.
  106. Jump up^ Wignall, Paul B.; et al. (2009). "Volcanism, Mass Extinction, and Carbon Isotope Fluctuations in the Middle Permian of China". Science. 324 (5931): 1179–1182. Bibcode:2009Sci...324.1179W. doi:10.1126/science.1171956. PMID 19478179.
  107. Jump up^ Andy Saunders; Marc Reichow (2009). "The Siberian Traps – Area and Volume". Retrieved 2009-10-18.
  108. Jump up^ Andy Saunders & Marc Reichow (January 2009). "The Siberian Traps and the End-Permian mass extinction: a critical review"(PDF). Chinese Science Bulletin. Springer. 54 (1): 20–37. doi:10.1007/s11434-008-0543-7.
  109. Jump up^ Reichow, MarcK.; Pringle, M.S.; Al'Mukhamedov, A.I.; Allen, M.B.; Andreichev, V.L.; Buslov, M.M.; Davies, C.E.; Fedoseev, G.S.; Fitton, J.G.; Inger, S.; Medvedev, A.Ya.; Mitchell, C.; Puchkov, V.N.; Safonova, I.Yu.; Scott, R.A.; Saunders, A.D. (2009). "The timing and extent of the eruption of the Siberian Traps large igneous province: Implications for the end-Permian environmental crisis" (PDF). Earth and Planetary Science Letters. 277: 9–20. Bibcode:2009E&PSL.277....9R. doi:10.1016/j.epsl.2008.09.030.
  110. Jump up^ Kamo, SL (2003). "Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian–Triassic boundary and mass extinction at 251 Ma". Earth and Planetary Science Letters. 214: 75–91. Bibcode:2003E&PSL.214...75K. doi:10.1016/S0012-821X(03)00347-9.
  111. Jump up^ "Volcanism".
  112. Jump up^ Dan Verango (January 24, 2011). "Ancient mass extinction tied to torched coal". USA Today.
  113. Jump up^ Stephen E. Grasby, Hamed Sanei & Benoit Beauchamp (January 23, 2011). "Catastrophic dispersion of coal fly ash into oceans during the latest Permian extinction". Nature Geoscience. 4 (2): 104–107. Bibcode:2011NatGe...4..104G. doi:10.1038/ngeo1069.
  114. Jump up^ "Researchers find smoking gun of world's biggest extinction; Massive volcanic eruption, burning coal and accelerated greenhouse gas choked out life". University of Calgary. January 23, 2011. Retrieved 2011-01-26.
  115. Jump up^ Yang, QY (2013). "The chemical compositions and abundances of volatiles in the Siberian large igneous province: Constraints on magmatic CO2 and SO2 emissions into the atmosphere". Chemical Geology. 339: 84–91. doi:10.1016/j.chemgeo.2012.08.031.
  116. Jump up^ Burgess, Seth D.; Bowring, Samuel; Shen, Shu-zhong (2014-03-04). "High-precision timeline for Earth's most severe extinction". Proceedings of the National Academy of Sciences. 111 (9): 3316–3321. doi:10.1073/pnas.1317692111. ISSN 0027-8424. PMC 3948271
    9px-Lock-green.svg.png
    . PMID 24516148.
  117. Jump up^ "Earth's worst extinction "inescapably" tied to Siberian Traps, CO2, and climate change". Skeptical Science. Retrieved 2016-03-11.
  118. Jump up^ Black, Benjamin A.; Weiss, Benjamin P.; Elkins-Tanton, Linda T.; Veselovskiy, Roman V.; Latyshev, Anton (2015-04-30). "Siberian Traps volcaniclastic rocks and the role of magma-water interactions". Geological Society of America Bulletin. 127: B31108.1. doi:10.1130/B31108.1. ISSN 0016-7606.
  119. Jump up^ Burgess, Seth D.; Bowring, Samuel A. (2015-08-01). "High-precision geochronology confirms voluminous magmatism before, during, and after Earth's most severe extinction". Science Advances. 1 (7): e1500470. doi:10.1126/sciadv.1500470. ISSN 2375-2548. PMC 4643808
    9px-Lock-green.svg.png
    . PMID 26601239.
  120. Jump up^ Fischman, Josh. "Giant Eruptions and Giant Extinctions [Video]". Scientific American. Retrieved 2016-03-11.
  121. Jump up^ Palfy J, Demeny A, Haas J, Htenyi M, Orchard MJ, Veto I (2001). "Carbon isotope anomaly at the Triassic– Jurassic boundary from a marine section in Hungary". Geology. 29 (11): 1047–1050. Bibcode:2001Geo....29.1047P. doi:10.1130/0091-7613(2001)029<1047:CIAAOG>2.0.CO;2. ISSN 0091-7613.
  122. ^ Jump up to:a b c Berner, R.A. (2002). "Examination of hypotheses for the Permo-Triassic boundary extinction by carbon cycle modeling". Proceedings of the National Academy of Sciences. 99 (7): 4172–4177. Bibcode:2002PNAS...99.4172B. doi:10.1073/pnas.032095199. PMC 123621
    9px-Lock-green.svg.png
    . PMID 11917102.
  123. ^ Jump up to:a b Dickens GR, O'Neil JR, Rea DK & Owen RM (1995). "Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene". Paleoceanography. 10 (6): 965–71. Bibcode:1995PalOc..10..965D. doi:10.1029/95PA02087.
  124. Jump up^ White, R. V. (2002). "Earth's biggest 'whodunnit': Unravelling the clues in the case of the end-Permian mass extinction". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 360 (1801): 2963–85. doi:10.1098/rsta.2002.1097. PMID 12626276.
  125. Jump up^ Schrag, D.P., Berner, R.A., Hoffman, P.F., and Halverson, G.P. (2002). "On the initiation of a snowball Earth". Geochemistry Geophysics Geosystems. 3 (6): 1036. Bibcode:2002GGG....3fQ...1S. doi:10.1029/2001GC000219.Preliminary abstract at Schrag, D.P. (June 2001). "On the initiation of a snowball Earth". Geological Society of America.
  126. ^ Jump up to:a b Benton, M.J.; Twitchett, R.J. (2003). "How to kill (almost) all life: the end-Permian extinction event". Trends in Ecology & Evolution. 18 (7): 358–365. doi:10.1016/S0169-5347(03)00093-4.
  127. Jump up^ Dickens GR (2001). "The potential volume of oceanic methane hydrates with variable external conditions". Organic Geochemistry. 32 (10): 1179–1193. doi:10.1016/S0146-6380(01)00086-9.
  128. Jump up^ Reichow MK, Saunders AD, White RV, Pringle MS, Al'Muhkhamedov AI, Medvedev AI & Kirda NP (2002). "40Ar/39Ar Dates from the West Siberian Basin: Siberian Flood Basalt Province Doubled". Science. 296 (5574): 1846–1849. Bibcode:2002Sci...296.1846R. doi:10.1126/science.1071671. PMID 12052954.
  129. Jump up^ Holser WT, Schoenlaub H-P, Attrep Jr M, Boeckelmann K, Klein P, Magaritz M, Orth CJ, Fenninger A, Jenny C, Kralik M, Mauritsch H, Pak E, Schramm J-F, Stattegger K & Schmoeller R (1989). "A unique geochemical record at the Permian/Triassic boundary". Nature. 337 (6202): 39–44. Bibcode:1989Natur.337...39H. doi:10.1038/337039a0.
  130. Jump up^ Dobruskina IA (1987). "Phytogeography of Eurasia during the early Triassic". Palaeogeography, Palaeoclimatology, Palaeoecology. 58 (1–2): 75–86. doi:10.1016/0031-0182(87)90007-1.
  131. Jump up^ Wignall, P.B.; Twitchett, R.J. (2002). "Extent, duration, and nature of the Permian-Triassic superanoxic event". Geological Society of America Special Papers. 356: 395–413. doi:10.1130/0-8137-2356-6.395. ISBN 0-8137-2356-6.
  132. Jump up^ Cao, Changqun; Gordon D. Love; Lindsay E. Hays; Wei Wang; Shuzhong Shen; Roger E. Summons (2009). "Biogeochemical evidence for euxinic oceans and ecological disturbance presaging the end-Permian mass extinction event". Earth and Planetary Science Letters. 281 (3–4): 188–201. Bibcode:2009E&PSL.281..188C. doi:10.1016/j.epsl.2009.02.012.
  133. Jump up^ Hays, Lindsay; Kliti Grice; Clinton B. Foster; Roger E. Summons (2012). "Biomarker and isotopic trends in a Permian–Triassic sedimentary section at Kap Stosch, Greenland". Organic Geochemistry. 43: 67–82. doi:10.1016/j.orggeochem.2011.10.010.
  134. Jump up^ Meyers, Katja; L.R. Kump; A. Ridgwell (September 2008). "Biogeochemical controls on photic-zone euxinia during the end-Permian mass extinction". Geology. 36 (9): 747–750. doi:10.1130/G24618A (inactive 2016-03-11).
  135. ^ Jump up to:a b c Kump, Lee; Alexander Pavlov; Michael A. Arthur (2005). "Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia". Geology. 33 (5): 397–400. Bibcode:2005Geo....33..397K. doi:10.1130/G21295.1.
  136. Jump up^ The Permian – Palaeos
  137. ^ Jump up to:a b Rothman, D. H.; Fournier, G. P.; French, K. L.; Alm, E. J.; Boyle, E. A.; Cao, C.; Summons, R. E. (2014-03-31). "Methanogenic burst in the end-Permian carbon cycle". Proceedings of the National Academy of Sciences. 111 (15): 5462–7. doi:10.1073/pnas.1318106111. PMC 3992638
    9px-Lock-green.svg.png
    . PMID 24706773. — Lay summary: Chandler, David L.; Massachusetts Institute of Technology (March 31, 2014). "Ancient whodunit may be solved: Methane-producing microbes did it!". Science Daily.
  138. Jump up^ Shen, Shu-Zhong; Bowring, Samuel A. (2014). "The end-Permian mass extinction: A still unexplained catastrophe". National Science Review. 1 (4): 492–495. doi:10.1093/nsr/nwu047.
  139. Jump up^ Zhang R, Follows, MJ, Grotzinger, JP, & Marshall J (2001). "Could the Late Permian deep ocean have been anoxic?". Paleoceanography. 16 (3): 317–329. Bibcode:2001PalOc..16..317Z. doi:10.1029/2000PA000522.
 


Lethally Hot Temperatures During the Early Triassic Greenhouse
  1. Yadong Sun1,2,*,
  2. Michael M. Joachimski3,
  3. Paul B. Wignall2,
  4. Chunbo Yan1,
  5. Yanlong Chen4,
  6. Haishui Jiang1,
  7. Lina Wang1,
  8. Xulong Lai1
+ Author Affiliations


Abstract

Global warming is widely regarded to have played a contributing role in numerous past biotic crises. Here, we show that the end-Permian mass extinction coincided with a rapid temperature rise to exceptionally high values in the Early Triassic that were inimical to life in equatorial latitudes and suppressed ecosystem recovery. This was manifested in the loss of calcareous algae, the near-absence of fish in equatorial Tethys, and the dominance of small taxa of invertebrates during the thermal maxima. High temperatures drove most Early Triassic plants and animals out of equatorial terrestrial ecosystems and probably were a major cause of the end-Smithian crisis.

Lethally Hot Temperatures During the Early Triassic Greenhouse | Science

Really Mr. Westwall, a massive volcanic event, yes. Cold for a while, yes. But that has happened before, and not resulted in a 95% species die off. However, plenty of proof for the hothouse conditions that came immediately after the short cold period, and persisted for a long time, even geologically speaking.
 
Multiple Early Triassic greenhouse crises impeded recovery from Late Permian mass extinction

Abstract

The Late Permian mass extinction was not only the most catastrophic known loss of biodiversity, but was followed by unusually prolonged recovery through the Early Triassic. Opinion has been divided on whether delayed recovery was a legacy of especially profound ecological disruption, or due to additional environmental perturbations. New records from the Sydney Basin in southeastern Australia now reveal five successive Late Permian and Early Triassic spikes of unusually high atmospheric CO2 and profound chemical weathering. These successive atmospheric CO2 greenhouse crises coincided with unusually warm and wet paleoclimates for a paleolatitude of 61°S. Successive transient greenhouse crises punctuated long-term, cool, dry, and low-CO2 conditions, and may account for the persistence of low diversity and small size in Early Triassic plants and animals.

Multiple Early Triassic greenhouse crises impeded recovery from Late Permian mass extinction

More evidence.
 
Postapocalyptic greenhouse paleoclimate revealed by earliest Triassic paleosols in the Sydney Basin, Australia
  1. Gregory J. Retallack1
+ Author Affiliations

  1. 1Department of Geological Sciences, University of Oregon, Eugene, Oregon 97403
Abstract
The Permian-Triassic boundary in the Sydney Basin of Australia is coincident with a pronounced decrease in δ13C isotopic values of organic carbon, the last coals anywhere in the world for all of the Early Triassic (ca. 6 m.y.) time, and extirpation of the Glossopteris flora at the top of the Illawarra and Newcastle Coal Measures. Coal-bearing paleosols of the latest Permian represent extensive swamplands of the seasonally deciduous Glossopteris flora in a humid cold temperate lowland southwest of an Andean-style volcanic arc. Stone-rolls (large ribs of floor rock up into the coal) within some of the uppermost coals of the Permian coal measures can be interpreted as string bogs of a kind now found in cold climates at latitudes of 68°–70°, which is compatible with a paleomagnetically estimated paleolatitude of 65°–85°S for the Sydney Basin. Paleolatitude was not much different for earliest Triassic time, but paleosols of that age include Inceptisols and Entisols showing substantial chemical and textural weathering, more like soils now forming at latitudes of 40°–58° than those within polar circles. This anomalous high-latitude warmth set in at the Permian-Triassic boundary. Sedimentation rates increased at the boundary marked by geochemically unusual acidification of clay and a dramatic carbon isotopic excursion. These changes in environments and ecosystems can be explained by soil erosion following deforestation implied by the plant extinctions and abundant fungal remains at the Permian-Triassic boundary. Evidence from paleosols can now be added to that from paleontological and isotopic studies showing that disruption of the carbon cycle at the Permian-Triassic boundary resulted in a CO2 or CH4 post-apocalyptic greenhouse paleoclimate.

Footnotes
  • Geological Society of America
Postapocalyptic greenhouse paleoclimate revealed by earliest Triassic paleosols in the Sydney Basin, Australia

How many more articles do you want that shows how either you are a liar or that you stopped learning in geology 20 years ago.
 
These cataclysmic volcanic events being discussed throw other gases besides CO2 into the atmosphere and are misleading. The cataclysmic volcano events being discussed did not occur with our current land mass distribution. The events below do isolate CO2 and did occur with our current landmass distribution.

1. The temperature fell 10 million years ago while CO2 was increasing.

2. Antarctic thawing occurred while CO2 values dropped at the OI/Mio transition and never fell below levels of the OI.

3. The glacial-interglacial cycles of the past 500,000 years began while atmospheric CO2 was greater than 400 ppm.

4. It took 12 million years for the temperature to fall to the temperature predicted by radiative forcing of CO2.

late%20Permian.jpg


jurassic%20mid.JPG


136143-004-0FC92E84.jpg
 

Lethally Hot Temperatures During the Early Triassic Greenhouse




    • Yadong Sun1,2,*,
    • Michael M. Joachimski3,
    • Paul B. Wignall2,
    • Chunbo Yan1,
    • Yanlong Chen4,
    • Haishui Jiang1,
    • Lina Wang1,
    • Xulong Lai1
+ Author Affiliations


Abstract

Global warming is widely regarded to have played a contributing role in numerous past biotic crises. Here, we show that the end-Permian mass extinction coincided with a rapid temperature rise to exceptionally high values in the Early Triassic that were inimical to life in equatorial latitudes and suppressed ecosystem recovery. This was manifested in the loss of calcareous algae, the near-absence of fish in equatorial Tethys, and the dominance of small taxa of invertebrates during the thermal maxima. High temperatures drove most Early Triassic plants and animals out of equatorial terrestrial ecosystems and probably were a major cause of the end-Smithian crisis.

Lethally Hot Temperatures During the Early Triassic Greenhouse | Science

Really Mr. Westwall, a massive volcanic event, yes. Cold for a while, yes. But that has happened before, and not resulted in a 95% species die off. However, plenty of proof for the hothouse conditions that came immediately after the short cold period, and persisted for a long time, even geologically speaking.




Cold for a "while". Get real silly boy. The evidence for continental glaciation is everywhere from that time. There is zero evidence for your hot house. Which, even if it had happened would have been a mere return to the normal state of things considering that over 75% of the Earths history has had warmer temperatures than now. We are ABNORMALLY LOW TEMP.
 
And where, on your graphs, did homo sapiens appear? That was 200,000 years ago. That is the rightmost one-fiftieth of the rightmost division (0 - 10 Mya) of your lower graph. The most primitive stirrings of human culture took place at the the rightmost one-fortieth of THAT. There are conditions on your timeline that, were they to come about within the next century, would endanger the species.
 
And where, on your graphs, did homo sapiens appear? That was 200,000 years ago. That is the rightmost one-fiftieth of the rightmost division (0 - 10 Mya) of your lower graph. The most primitive stirrings of human culture took place at the the rightmost one-fortieth of THAT. There are conditions on your timeline that, were they to come about within the next century, would endanger the species.

Like the 230 feet of sea level change that can happen within a 4-5c warmer world. 150 miles the shoreline of the east coast would move inland...Good bye to the biggest cities in china too.
 

Lethally Hot Temperatures During the Early Triassic Greenhouse




    • Yadong Sun1,2,*,
    • Michael M. Joachimski3,
    • Paul B. Wignall2,
    • Chunbo Yan1,
    • Yanlong Chen4,
    • Haishui Jiang1,
    • Lina Wang1,
    • Xulong Lai1
+ Author Affiliations


Abstract

Global warming is widely regarded to have played a contributing role in numerous past biotic crises. Here, we show that the end-Permian mass extinction coincided with a rapid temperature rise to exceptionally high values in the Early Triassic that were inimical to life in equatorial latitudes and suppressed ecosystem recovery. This was manifested in the loss of calcareous algae, the near-absence of fish in equatorial Tethys, and the dominance of small taxa of invertebrates during the thermal maxima. High temperatures drove most Early Triassic plants and animals out of equatorial terrestrial ecosystems and probably were a major cause of the end-Smithian crisis.

Lethally Hot Temperatures During the Early Triassic Greenhouse | Science

Really Mr. Westwall, a massive volcanic event, yes. Cold for a while, yes. But that has happened before, and not resulted in a 95% species die off. However, plenty of proof for the hothouse conditions that came immediately after the short cold period, and persisted for a long time, even geologically speaking.




Cold for a "while". Get real silly boy. The evidence for continental glaciation is everywhere from that time. There is zero evidence for your hot house. Which, even if it had happened would have been a mere return to the normal state of things considering that over 75% of the Earths history has had warmer temperatures than now. We are ABNORMALLY LOW TEMP.
My, my, I just posted research by real scientists, not message board frauds, that says otherwise. And, yes, there was Permian glaciation, and the critters did just fine during those glaciations. Only with the eruption of the Siberian Trapps, and ensuing Greenhouse conditions did the Great Dying take place. And, yes, there is ample evidence for that.
 
How to kill (almost) all life: the end-Permian extinction event


Abstract

The biggest mass extinction of the past 600 million years (My), the end-Permian event (251 My ago), witnessed the loss of as much as 95% of all species on Earth. Key questions for biologists concern what combination of environmental changes could possibly have had such a devastating effect, the scale and pattern of species loss, and the nature of the recovery. New studies on dating the event, contemporary volcanic activity, and the anatomy of the environmental crisis have changed our perspectives dramatically in the past five years. Evidence on causation is equivocal, with support for either an asteroid impact or mass volcanism, but the latter seems most probable. The extinction model involves global warming by 6°C and huge input of light carbon into the ocean-atmosphere system from the eruptions, but especially from gas hydrates, leading to an ever-worsening positive-feedback loop, the ‘runaway greenhouse’

http://www.sciencedirect.com/science/article/pii/S0169534703000934

Real scientists.
 
So 6c of global warming within the next few hundred years could kill 95% of all species on this planet and probably humans.
 

Forum List

Back
Top