Busy Hurricane Season is predicted for 2024

It is found that the global salinity variations associated with the thermohaline circulation may have a tendency to make the circulation increasingly asymmetric with respect to the equator. As a consequence the salinity difference between the Pacific and the Atlantic Ocean may be slowly increasing. Such a process could have a time scale long enough to be comparable with the time span between major glaciations. A speculative glaciation cycle is proposed which involves the above mentioned property of the thermohaline circulation. In this cycle the role of a Northern Hemisphere glaciation is to bring excess freshwater from the Pacific to the Atlantic.

 

Atlantic Ocean Circulation During the Last Ice Age​


There is strong evidence that the circulation of the deep Atlantic during the peak of the last Ice Age, or the Last Glacial Maximum (LGM; ~22,000 to 19,000 years ago) was different from the modern circulation (Boyle & Keigwin 1987, Duplessy et al. 1988, Marchal & Curry 2008). Compilations of deepwater δ13C and CdW for the LGM (Figure 5) show several features that contrast with their modern distributions. Whereas much of the modern deep western Atlantic has similar δ13C values because it is filled with NADW, during the LGM, the range of δ13C values was larger than today, with higher values in NADW and lower values in AABW. The main core of high-δ13C, low-CdW NADW was at least 1000 meters shallower than today, probably because the density difference between surface waters and deep water was reduced — surface salinity may have decreased as a result of less evaporation due to colder glacial temperatures, and as a result of input of freshwater from glaciers surrounding the North Atlantic (Boyle & Keigwin 1987). In the western Atlantic, depths below ~2 km were filled with AABW. Radiocarbon data suggest that deepwater was older (Keigwin & Schlegel 2002), consistent with less NADW and more AABW as indicated by the δ13C and CdW of benthic foraminifera. Glacial δ13C data from the eastern Atlantic suggest that the boundary between glacial AABW and glacial NADW may have been shallower than in the western Atlantic (Sarnthein et al. 1994), although the difference may be the result of local effects caused by increased glacial productivity and higher rates of remineralization of low-δ13C organic carbon in the eastern basin. Inferences using other kinds of proxy data of deep Atlantic circulation are consistent with the changes inferred from δ13C, Cd/Ca and 14C of benthic foraminifera (Lynch-Steiglitz et al. 2007).


 
When we get to the math part ... remember that the lower currents are 200 times slower than the wind currents ... salt transport has nothing to do with climate or weather ...
No offense but your reply was so dumb that it doesn't really merit a response. It's not about salt transport and maybe read up on the factors which contribute to ocean currents and where the majority of the heat is stored. I'll leave it at that.
 
It is found that the global salinity variations associated with the thermohaline circulation may have a tendency to make the circulation increasingly asymmetric with respect to the equator. As a consequence the salinity difference between the Pacific and the Atlantic Ocean may be slowly increasing. Such a process could have a time scale long enough to be comparable with the time span between major glaciations. A speculative glaciation cycle is proposed which involves the above mentioned property of the thermohaline circulation. In this cycle the role of a Northern Hemisphere glaciation is to bring excess freshwater from the Pacific to the Atlantic.

This article is from 1985. The idea doesn't seem to have taken off.
 

Forum List

Back
Top